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Abstract—Understanding dynamic program behavior is critical
in many stages of the software development lifecycle, for purposes
as diverse as optimization, debugging, testing, and security. This
paper focuses on the problem of predicting dynamic program
behavior statically. We introduce a novel technique to statically
identify hot paths that leverages emerging deep learning tech-
niques to take advantage of their ability to learn subtle, complex
relationships between sequences of inputs. This approach maps
well to the problem of identifying the behavior of sequences of
basic blocks in program execution. Our technique is also designed
to operate on the compiler’s intermediate representation (IR), as
opposed to the approaches taken by prior techniques that have
focused primarily on source code, giving our approach language-
independence. We describe the pitfalls of conventional metrics
used for hot path prediction such as accuracy, and motivate the
use of Area Under the Receiver Operating Characteristic curve
(AUROC). Through a thorough evaluation of our technique on
complex applications that include the SPEC CPU2006 bench-
marks, we show that our approach achieves an AUROC of 0.85.

I. INTRODUCTION

Runtime behavior analysis is crucial to virtually all aspects
of the software lifecycle. It forms the basis of numerous
compiler optimizations [36], facilitates understanding software
vulnerabilities, improves program testing and debugging, and
informs the software development process [24].

Prior work has shown that programs spend most of their ex-
ecution time along a small percentage of the possible program
paths [10]. Analysis of these hot paths is one aspect of runtime
behavior that is particularly relevant to software construction,
debugging, and optimization. Path profiling can be used in
branch prediction [50], trace formation [18], and basic block
placement optimizations [4]. Testing can take advantage of
path execution analysis to estimate code coverage.

Hot path identification and analysis has been and continues
to be a focus of research [7] [10] [23] [28] [39] [43]. Dynamic
profiling commonly uses instrumentation to calculate path
execution information [18] [38]. However, dynamic profiling
requires the program to be run in its entirety, introducing
several significant hurdles:

1) Representative environments – dynamic profiling re-
quires identifying and using inputs and environments
representative of production during profiling. Unfortu-
nately, identifying such inputs can be time consuming,
and may be difficult to achieve in practice.

2) Processing overhead and churn – because a program
must be executed completely before a full profile can be
generated, the computational expense and latency can
prohibit leveraging dynamic profiles for software with a
rapid development cycle.

3) In for a penny, in for a pound – dynamically char-
acterizing paths for a subset of functions or paths is
nearly as computationally expensive as characterizing
paths for the whole program. This makes it difficult to
quickly obtain path behavior information for a subset of
a program’s paths or functions.

An alternative approach to dynamic profiling is to statically
profile – to predict runtime properties of the program before
the program runs. A path in program execution is defined as
a particular sequence of instructions in a program’s control
flow graph, and these instructions are fixed before runtime.
The hypothesis underlying static path profiling is that a useful
range of behavioral program characteristics are latent within
these instructions [37]. The higher the quality of static analysis
performed, the better the prediction of runtime behavior [16].
If the complex, subtle relationships between the static instruc-
tions in a program can be understood, the dynamic behavior
of the program can be predicted with high accuracy.

Static profilers can overcome the disadvantages of dynamic
profilers by exchanging precise, measured execution data for
rapidly and easily-generated predictions. However, state-of-
the-art static predictors typically rely on hand-crafted features
and heuristics [9] [19]. Such features and heuristics are often
language-specific, their characteristics being hard to generalize
to other languages.

This paper describes a novel approach to static hot path
prediction. Our approach is motivated by two insights. The
first is that compiler intermediate representation (IR) makes a
particularly effective vehicle for performing hot path analysis.
IR may contain both high-level semantic information and low-
level operation details (e.g., integer and float ops), offering a
rich set of data that can be useful for predicting program run-
time behavior. IR has been shown to be an effective platform
for prior static analysis research [8] [12]. Moreover, the control
flow in IR typically bears a very close resemblance to the
program’s machine code, meaning that predictions regarding
the control flow of the IR map directly to predictions about the
program’s machine code. Finally, IR supports many different
languages and platforms. Popular open source compilers such
as LLVM or GCC support dozens of source code languages
and target platforms [35] [5]. Techniques that can be applied
to IR therefore have a high degree of generality, as they can
be applied to many different languages out-of-the-box and
without language-specific modification.

Our second insight is that emerging data-driven machine-
learning is suited to the problem of hot path prediction for
two reasons. First, the amount of training data available is
enormous; individual SPEC CPU2006 benchmarks have path978-1-5090-3508-3/16/$31.00 © 2016 IEEE



counts numbering in the tens and hundreds of billions (this
point is elaborated in Section V). Second, these machine learn-
ing techniques are capable of learning extremely sophisticated
and subtle relationships in information. In particular, recurrent
neural networks (RNNs) are designed to perform sequence
learning – identifying the relationships between sequences of
inputs [26] – a capability that can be particularly useful in
understanding the behavior of sequences of blocks along a
program’s control flow graph. Such models can be designed
to incorporate both the order and content of instructions.

Leveraging these insights, this paper presents CrystalBall,
a novel technique for identifying hot paths at compile time.
CrystalBall relies solely on IR, both in training and in infer-
ence, and thus achieves language and platform-independence.
CrystalBall uses an RNN, a sequence learning approach, as
its underlying prediction mechanism. This has the advantages
of (1) being able to learn and identify complex relationships
along sequences of basic blocks in a program’s control flow
graph and (2) doing so with no human involvement in selecting
and hand-crafting input features. CrystalBall is implemented
as a pass in the compiler, able to perform hot path prediction
on individual paths, functions or the entire program with the
inclusion of a simple command line switch.

The specific contributions of our work are as follows:
• Path Prediction Metrics – we describe and motivate the

use of Area Under the Receiver Operating Characteristic
curve (AUROC), a significantly more rigorous metric
than prior work for comparing the effectiveness of hot
path prediction mechanisms (Section III).

• State-of-the-art Hot Path Prediction – we present
CrystalBall, an open source1, novel approach to hot path
prediction that

1) leverages compiler IR, achieving language and plat-
form independence, and

2) is based on a sequence learning approach rather than
hand-engineered feature selection (Section IV).

• Hot Path Indicators – we tested several classification
models in the design process of CrystalBall. We also
provide insight into features of static program code that
are indicative of hot and cold paths (Section V).

Using a suite of 21 test programs in three languages,
CrystalBall achieves an average AUROC of 0.85.

II. BACKGROUND

Finding frequently executed code in an arbitrary program is
a problem of interest. Program profiling, for example, aims to
identify frequently-executed code. Work has also been done
to find efficient ways to enumerate execution paths, such as
Ball-Larus path profiling [10].

A. Dynamic vs. Static Profiling
Dynamic profiling executes a program and uses runtime data

to optimize the program at compile-time. Profiling is typically
performed dynamically, by executing the program code with
a set of input data that is representative of real system usage.
However, dynamic profiling has several limitations.

First, it is difficult to perform full dynamic profiling on
a single path of execution or a subset of execution paths

1https://github.com/szekany/crystalball
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Fig. 1: Example of function path enumeration using Ball-Larus
algorithm (left - edge weights between basic blocks, right -
example of path reconstruction)

without executing the entire program, even when techniques
such as hybrid slicing are used to reduce the overhead of
analysis computation [31].

Second, for many applications, it is also difficult to generate
inputs representative of real execution environments. The
selection of inputs and execution environment is crucial to
realize high quality dynamic profiling. In addition, a particular
dynamic profiling instance is guaranteed to be correct only for
the given input data [14]. Proper inputs must therefore cover
a breadth of workloads, as well as error conditions for the
program to be profiled accurately.

Finally, the runtime overhead of performing dynamic pro-
filing can be expensive. Dynamic profiling necessitates re-
executing the entire program each time the application is
changed and subsequently compiled (irrespective of the size
and scope of the change).

A static approach to infer the dynamic behavior of applica-
tion code has the potential to mitigate these limitations.

B. Hot Path Definition

Although various definitions of hot path have been used
throughout prior works, generally a hot path is defined as
a sequence of instructions that are frequently executed [46],
often further quantified by a measure such as percentage of
execution relative to all paths [23] or percentage of runtime
[19]. We define a hot path as a path that is executed more than
a threshold n.

C. Ball-Larus Path Profiling

While program profiling techniques can measure many
kinds of program components, we choose to focus on paths.
Unlike basic blocks or edges profiling, paths provide a more
complete picture of the execution of a program, because a
program is empirically a series of basic blocks executed in a
certain order.

https://github.com/szekany/crystalball


Fig. 2: Example precision and recall rates across a range of
threshold values

A path is a sequence of basic blocks executed in a function,
typically from the function’s entry point to exit point. We
utilize the Ball-Larus method for path enumeration and con-
struction [10]. In Ball-Larus, each function is first converted to
a directed acyclic graph (DAG), where nodes are represented
by basic blocks and the back edges (any edge pointing to a
preceding edge in depth-first search) have been removed. All
edges are then assigned weights such that the sum of all edge
weights for any given path is unique.

This unique sum of weights for a path is also the path
identification number. To reconstruct a path, the algorithm sets
a variable containing the path value equal to the path number
and identifies the entry node. At each node, the algorithm
chooses the edge with the largest weight not exceeding the
path value. The edge weight is decremented from the path
value, and the process is repeated until reaching the exit node.

An example of path reconstruction is shown in Figure 1.
This figure shows a simple function represented as a DAG,
with basic blocks as nodes. The DAG on the left shows the
edge weights, and the DAG on the right shows an example of
path reconstruction. The algorithm begins with a path value
equal to the path number (in this example, the path number is
3). From basic block A, the algorithm selects the edge with
the highest weight not exceeding the current path value. This
is the edge to block C with a weight of 2. Having taken the
edge, the path value is decremented by the edge weight and is
now 1. We select the next edge not exceeding the path value,
which is the edge to block E. From block E, we must take the
edge of weight 0 to F. The path value is now zero, and we
have enumerated the path.

Ball-Larus path profiling is lightweight and efficient, as it
requires only the addition of a counter as part of each edge to
trace program execution. It is important to note that program
execution is not required to enumerate all possible paths.

III. PATH PREDICTION METRIC

Hot path prediction is a classification problem. However,
measuring the quality of this classification is difficult, be-
cause metrics such as accuracy are problematic due to severe
class imbalance.

A. Limitations of Current Metrics
Since the vast majority of paths are never executed, it would

be trivial to achieve an extremely high accuracy value by
classifying each path as cold. For example, if the ratio of
hot paths to cold paths was 1:999, we could predict every
path to be cold and achieve an accuracy of 99.9%. (In fact,
using reference data for profiling, we find that fewer than 1
in 1,000,000 paths are hot in our set of test programs.) Yet,
despite achieving high accuracy, this statistic reveals nothing
about program behavior or the characteristics of any particular
hot path. Therefore, we find that accuracy is an insufficient
metric to capture both the salient points and nuances of hot
path classification.

Typical machine-learning classifiers work by assigning
probabilities to items. A binary classifier must therefore choose
a threshold to map probabilities to classifications (such as hot
or cold path). The threshold for designating a path as hot or
cold will also greatly affect traditional binary classification
metrics like precision, recall, and false positive rate. These
are defined as follows:

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

false positive rate =
false positives

false positives + true negatives

For hot path prediction, a threshold that is too low will
yield especially poor precision scores because there is so
much potential for false positives in a set of paths that are
almost all cold.

However, too high a threshold will yield a poor recall
because there are not enough true positives to absorb even a
handful of false negatives. These effects can be seen in Figure
2, which shows precision and recall for a binary classifier with
large class imbalance. The recall drops precipitously as the
threshold is increased due to the number of false negatives,
despite precision remaining high. At high threshold values
(x = .9, for example), many true positives are not included.
However, at lower threshold values (x = .75) too many items
are incorrectly included as positive.

Additionally, the penalty for a false positive classification
versus a false negative differs depending on the exact appli-
cation of the classification. For example, it may be better to
have a handful of false positives than to miss an actual hot
path when running a hot path-based compiler optimization. In
this case, a low precision score is more acceptable because the
marginal penalty for each additional false positive is low.

F1 score has been used to evaluate hot path classification
models in the past [19]. The F1 score is the harmonic mean
of precision and recall [21]: F1 = 2× precision × recall

precision + recall
However, F1 scores suffer from the same pitfalls as precision

and recall with respect to an arbitrary threshold [42]. It also



considers precision and recall with equal influence. A low
threshold will produce a low precision, which will result in an
inferior F1 score. The arbitrarily low threshold causes poor pre-
cision, and the F1 score is lowered significantly, even though
precision is not nearly as important as recall in many cases.

As an example, consider a medical screening that tests for a
dangerous disease. The highest F1 is likely to select a tradeoff
between precision and recall, while we may care much more
about recall (it is better to accidentally send a patient to
the doctor than miss the disease entirely). Additionally, the
optimal tradeoff between precision and recall may vary on a
per-patient or per-hospital basis.

Given these pitfalls, we propose that a superior metric
should aim to:

• take into account all possible thresholds, and
• give useful measures of model quality in the presence of

severe class imbalance.

B. AUROC
Classifiers for data sets from other domains with similar

class imbalance typically use metrics based on the Receiver
Operating Characteristic curve (ROC) [17] [25]. Medical di-
agnosis classifiers must pick out the few patients with a rare
disease from a vast number of healthy patients. Website vul-
nerability classifiers must predict which sites have a high risk
of being compromised in the near future from the sea of low-
risk websites. In each of these domains, the penalty for a false
positive is very different from the penalty for a false negative.
A false positive medical diagnosis could subject a patient to
expensive and life-disrupting treatment unnecessarily, while a
false negative could result in an untreated patient dying. A
vulnerable website could be compromised if the webmaster is
not notified of the vulnerability, but too many false warnings
will result in the webmaster ignoring them. The choice of
threshold of the vulnerabilities reported to the webmaster is
therefore important. In order to choose a good threshold, it is
necessary to have insight into the rate of true positives and
false positives that will result.

An ROC curve is generated by plotting the true positive rate
(recall) versus the false positive rate across the entire range of
possible thresholds. Figure 3 shows an example of a perfect
recall (at y = 1), random recall (where x = y), and an example
of real data from our hot path classifier. The y-value plotted
at (x = 0.5) is the true positive rate at the threshold required
to give a false positive value of 0.5. The ROC curve gives
insight into the effects of picking any threshold. A suitable
threshold can then be chosen based on the desired trade-off
between true positives and false positives.

Evaluation of the classifier as a whole in a single metric,
independent of the threshold, can be performed using the Area
Under the ROC Curve (AUROC, or simply AUC) [17].

A perfect ROC curve, shown in green in Figure 3, would
always have a true positive rate of 1 and a false positive rate of
0, except when the threshold is 0 and everything is classified
as positive. Therefore, the only two points on the plot would
be at (0, 1), when the threshold is anything besides 0, and
(1, 1), when the threshold is 0. The area under such an ROC
curve would be 1.
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Fig. 3: Example ROC curves showing a perfect classifier (has
100% true positive rate for all values of false positive rate), a
classifier that is no better than random chance (false positive
rate = true positive rate), and an example of a classifier that
falls in between. (Note that it is possible for a classifier to
perform worse than random chance, but then the classification
can simply be inverted.)

A classifier based on random chance would be expected
to have a true positive rate that equals the false positive rate
for any threshold. This would mean that for any decrease in
threshold, there would be an increase in just as many false
positives as the increase in true positives. Such an ROC curve
is shown in red in Figure 3 and yields an AUROC of 0.5. An
AUROC a < 0.5 means that the positive and negative classes
are mislabeled and should be switched, after which will result
in an AUROC of 1 - a > .5.

Another way to interpret the AUROC is as the likelihood
that given a random positive instance and a random negative
instance, the classifier will score the positive instance higher
than the negative instance. In this way, AUROC is an excellent
metric for evaluating classifiers independent of thresholds.

IV. CRYSTALBALL

The CrystalBall system has three major components, which
will be elaborated in the following section. First, the train and
test program feature vectors are collected from the compiler’s
IR. Next, the RNN model trains on the train program feature
data. Finally, the model infers on test program data and is eval-
uated. The system components are diagrammed in Figure 4.

A. Training and Data

CrystalBall’s hot path prediction can be applied to a pro-
gram with the inclusion of a single compiler pass.

1) Obtaining Ground-Truth: Training examples for classifi-
cation models require that their actual classification be known.
CrystalBall obtains the ground truth of hot path via program
execution with path profiling instrumentation. The inserted
instrumentation tracks each path’s execution count. These
execution counts are used as the ground truth for whether each
particular path is hot or cold.
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Fig. 4: CrystalBall overview

Fig. 5: Basic block feature vector extraction

2) Static Data Extraction: CrystalBall describes features of
the IR code at the basic block level. These code characteristics
may be relevant to path behavior and should be quantifiable,
although their relationship with path behavior may extend
beyond what is obvious to human perception.

The CrystalBall compiler pass performs static analysis on
individual basic blocks in the program. A path is treated as a
sequence of basic blocks. For each basic block, we obtain a
feature vector of a count of opcode types. The feature vector
is therefore a count of each type of instruction contained in
the basic block. This process is shown in Figure 5.

3) Path Sampling: The number of paths in a program does
not scale with the size of the program, but rather with the
complexity of the control flow graph (CFG) of each function.
A function with a long case statement, for example, will have
a higher number of basic blocks than a function that sim-
ply performs calculations without any conditional statements.
The more conditional statements, the more paths exist. For
example, two control flow graphs with 20 basic blocks and a
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Fig. 6: Hots paths and total paths for the SPEC CPU2006
benchmarks and Sirius suite kernels

thousand paths each, when connected by a single edge, would
contain one million paths.

This kind of large, highly connected function presents
a particular challenge for training a model. Several SPEC
CPU2006 programs have functions with over one billion
paths, and gcc has over 100 billion paths. Using every single
path of these programs to train the neural network model
requires too much time and memory on today’s hardware.
We mitigate this by imposing a maximum number of paths
from each function used for training and testing. Due to their
scarcity, hot paths in a function are always included. Figure
6 shows the number of hot paths compared to the number of
total paths in SPEC CPU2006 programs and Sirius kernels.
In all but one case, the number of cold paths exceeds the
number of hot paths by at least an order of magnitude, and
typically several orders of magnitude.

We attempted to scale the number of paths extracted from
each function based on the logarithm of the number of paths.
This method produced poor results, even when the total
number of paths exceeded the standard value. We therefore
chose to sample a standard number of paths equally from every
function. Any function with fewer paths will be sampled in its
entirety. We sample 2000 cold paths from each function due
to the limitation of system memory.



4) Splitting Training and Testing Data: Splitting training
and testing data is important for building a valid classification
model. The training data should capture the feature-label
relationships while avoiding manmade correlations between
the training and testing data.

A common approach to splitting training and testing data
sets is to pool all information from all benchmarks together,
and proceed to split the collected information into 30% as
testing data vs 70% as training data [48]. Neural network
models also require a small validation set. The validation data
is evaluated after each training epoch to signal the model to
stop training before overfitting the training data.

However, considering the strong similarities between indi-
vidual path data collected from the same program, we use
leave-one-program-out testing, illustrated in Figure 7. This
prevents paths in the same program from being present in
both the training and testing sets. Such a scheme mirrors the
application of hot path classifiers. A compiler is not statically
given the execution counts of half the paths in a program
to use as a model in predicting the execution counts of the
remaining paths. It is given a model based on a number
of different programs to make inferences on a new, entirely
unseen program. The training and testing scheme for a path
classifier should reflect this. A scheme that mixes paths of
the same program between training and testing data gives the
model an unrealistic advantage. If we had used such a scheme,
our results would likely have appeared better, but would have
no bearing on real-world applications.

During training, we take data collected from all but one of
the benchmark programs as the training data, while using the
data collected from the remaining program as the testing data.
An additional program is removed from the training data to
be used for validation. This process is repeated using every
benchmark program as the testing data once.

B. Sequence Learning Model
In recent years, the growing amount of available data com-

bined with widespread adoption of general purpose graphics
processing units (GPGPUs) has resulted in a resurgence of
neural networks, particularly for deep learning, where many
non-linear layers and complex architectures are used to auto-
matically learn features from data [8]. Sequence learning has
benefited heavily from this paradigm, facilitating dependency
modeling too complex or tedious for humans to generate
manually [29] [44] [30] [40].

1) Recurrent Neural Network: The task of predicting hot
paths lends itself naturally to this model. Given that a path
is an ordered sequence of basic blocks, a model that can use
this sequential nature should be particularly effective. This is
exactly the advantage that recurrent neural networks (RNNs)
provide. RNNs do not only output a classification for the input
data, they provide a classification at each step in the input
sequence and use the results of the previous steps to influence
the result of the current step [41]. This ability to remember
context allows the RNN to better classify much more nuanced
inputs. For example, if a basic block with many allocation
instructions occurs towards the beginning of a path, it might
suggest the creation of variables in preparation for frequently
executed computation. Whereas a basic block with similar
allocation instructions towards the end of a path might suggest

Path Features per Program Train/Test Configuration

Training 
Set

Validation 
Program

Test 
Program

Fig. 7: Training set construction in CrystalBall. Different
colors encode different programs (test and validation programs
are not included in training).

variables created for debugging and error handling procedures,
which are less likely. RNNs can account for this and for much
more complex relationships related to the sequence of inputs
beyond the intuition of humans.

Because conventional RNNs suffer from numerical instabil-
ity over large numbers of timesteps, we implemented ours with
long short-term memory (LSTM) [26] [33] units to mitigate
vanishing and exploding gradients.

2) LSTM Architecture: We use a two-layer LSTM model
with 256 cells per layer as illustrated in Figure 8. During
training, a path, represented as a sequence of instruction count
vectors, feeds into to the LSTM network for t timesteps, where
t is the number of basic blocks in the path. At each timestep:

• (a) A basic block’s instruction count vector feeds into all
256 cells of layer 1.

• (b) The output of the cells in layer 1 feeds into the input
of the cells in layer 2.

• (c) Additionally, each cell uses its previous timestep’s
output as input into the current timestep.

• (d) The output of layer 2 feeds into a time distributed
softmax, which compresses the output into a range from
0 to 1, representing a class label. In our case, a cold path
is represented as 0 and a hot path is represented as 1.

• (e) This output is compared to whether the path is actually
hot or not, which is our ground truth obtained through
dynamic profiling.

• (f) The loss is calculated between the timestep’s output
and the ground truth, and we apply back propagation
through time [49] to modify the cell weights to bring
the model output in line with the ground truth.

After the model is trained on all paths in the training set,
it is ready to be applied to the test program’s paths. The
inference results on the test paths are measured against the
ground truth to determine how well the model would have
performed inference on an uknown program.

C. Path Prediction

Throughout an inference, the instruction count vectors for
each basic block feed into the network just like the training
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Fig. 8: Recurrent Neural Network architecture and training steps

process, with one basic block per timestep. However, loss
calculation and reweighting do not occur. Only the softmax
of the last timestep is used to determine the class label of
the path being classified. The label indicates whether a path
is likely to be executed at least n times. For our testing, we
define n to be 1.

Any sequence of paths can feed into the model. The model
outputs a probability representing whether each path is likely
to be hot or not.

A user of CrystalBall can simply run the data extraction
compiler pass on any program and get the predictive path
profile for the program. These profiles can be used for further
optimization and analysis of the program.

V. EVALUATION

A. Methodology

1) Experimental Setup: Experiments were performed using
a server with a 6-core Intel Xeon E5-2620 v2 2.10GHz
processor, 256 gigabytes of DRAM, and 8 NVidia K40M
GPUs. The server was running Ubuntu 14.04, LLVM 3.3, and
Python 2.7.6. The neural network models were implemented
in Python using Theano [13] and Keras [22].

0 200 400 600 800 1000
Number of Paths

0

20

40

60

80

100

C
u
m
u
la
ti
v
e
 P
e
rc
e
n
ta
g
e
 o
f 
E
x
e
cu
ti
o
n
 T
im
e

astar
dealii
gcc
gemsfdtd
gobmk
gromacs
gmm

h264ref
hmmer
lbm
leslie3d
libquantum
mcf
milc

namd
omnetpp
povray
soplex
sphinx3
stemmer
xalancbmk

Fig. 9: Paths responsible for cumulative runtime

2) Benchmarks: We chose benchmarks representative of
real-world applications and workloads. Our primary bench-
marks are from SPEC CPU2006, both integer and floating-
point programs. These programs represent a wide array of
real-world applications in C, C++, and Fortran. Additionally,
we utilized two kernels from Sirius, an open-source end-to-
end personal assistant pipeline: gmm and stemmer [32]. These
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Fig. 10: Path counts per function
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Fig. 11: Max path length by program

Program Language Lines of Code Suite
astar C++ 5,842 SPEC CPU2006
dealii C++ 81,810 SPEC CPU2006
gcc C 484,953 SPEC CPU2006

gemsfdtd Fortran 11,580 SPEC CPU2006
gmm C++ 236 Sirius

gobmk C 190,118 SPEC CPU2006
gromacs C 72,220 SPEC CPU2006
h264ref C 51,578 SPEC CPU2006
hmmer C 35,992 SPEC CPU2006

lbm C 1,155 SPEC CPU2006
leslie3d Fortran 3,807 SPEC CPU2006

libquantum C 3,454 SPEC CPU2006
mcf C 2,685 SPEC CPU2006
milc C 15,042 SPEC CPU2006
namd C++ 2,127 SPEC CPU2006

omnetpp C++ 14,200 SPEC CPU2006
povray C++ 140,892 SPEC CPU2006
soplex C++ 41,463 SPEC CPU2006

sphinx3 C 18,280 SPEC CPU2006
stemmer C++ 865 Sirius

xalancbmk C++ 296,028 SPEC CPU2006

TABLE I: Benchmark details

benchmark programs each have a relatively small codebase,
but are representative of intelligent personal assistant server
applications. Details of the benchmarks are provided in Table
I. Each program was compiled to IR using Clang with the -O2
optimization flag.

The path profiler in LLVM does not support certain types
of indirect branches [1] [2]. This affected functions in six of
our benchmarks: dealii, namd, omnetpp, povray, soplex, and
xalancbmk. Functions containing these instructions could not
be instrumented and were therefore excluded from our training
and testing protocols.

B. Hot Path Prediction
We dynamically profile each program with the SPEC-

provided reference data. Figure 9 shows the execution time
distribution for each of these benchmarks. Most programs
have very few hot paths responsible for a large percentage of
runtime. In fact, fewer than a thousand paths are responsible
for over 80% of runtime for every test program except gmm.

Figure 10 shows the distribution of paths per function for
each benchmark via whiskers to the 95th percentile, as well
as the additional outliers. Several programs have only a few
functions with a small number of paths. Others, such as gcc,
have billions of paths.

The maximum path length varied by program, but was
usually less than 150, as shown in Figure 11.

CrystalBall achieves an average AUROC of 0.85. Although
we have pointed out the weaknesses of the metric, CrystalBall
achieves an F1 score of 0.82 using benchmarks in three
different languages, learning of features, and a difficult and
realistic training and testing scheme.

C. Comparison to Prior Work
We created a logistic regression (LR) model for hot path

classification during the development of CrystalBall in order
to compare our work to that of Buse and Weimer’s static
path classifier [19].

Buse and Weimer’s LR model extracts features from Java
source code, while ours uses features from LLVM IR. Our
LR model is based as closely as we can approximate on the
features used in their model. However, we do not include
features that are specific to Java source code and cannot be
extracted from IR, such as field coverage. Our aim is to provide
the best representation of what their approach would look like
if it were ported to a language-agnostic environment.

We also added IR-specific features to our model. For
example, our model makes a distinction between integer and
float operations. Additional feature engineering beyond this
may result in slightly better results, but we found the marginal
returns quickly diminished with each new IR feature.

We call our hand-crafted LR model the B&W model and
use it as a benchmark to compare CrystalBall. We used the
same set of programs to train and test the B&W model as with
CrystalBall. The only other difference besides the features
is the B&W training and testing contains one feature vector
per path, while CrystalBall contains a feature vector for each
basic block.

We find the B&W model achieves an average AUROC of
0.83, compared to CrystalBall’s average AUROC of 0.85.
However, any LR model necessarily requires selection and
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Fig. 12: AUROC by program

hand-engineering of features. This “top-down” approach is in
direct contrast to CrystalBall’s “bottom-up” deep learning of
features from opcode frequency in sequential basic blocks.

D. Program-Level Analysis

Figure 12 presents a breakdown of the prediction perfor-
mance of each model by program. There is considerable
variance across programs in both models. This is a tendency
of leave-one-out testing. A greater number of smaller, more
distinct test sets is prone to higher variance. The variance could
have been reduced by doing cross-fold validation instead,
where a handful of programs are held out for testing in a
group at once. This can also reduce testing time. However,
leave-one-out testing is more reflective of real-world compiler
scenarios. In exchange for longer testing time, we get data
specific to how the model performs on each program, which
provides more opportunity for detailed analysis.

The B&W model performs better than CrystalBall on a
few benchmarks, particularly lbm and gobmk. lbm is one of
the smallest programs by lines of code and number of paths,
although CrystalBall is quite a bit better on stemmer, another
very small program.

The LR models have a set of features to train on and
have only one weight associated with each feature. LSTMs,
as a much more powerful model, are capable of recognizing
complex patterns that LR models cannot. In many of the
larger programs, where very few paths are hot, the LSTM is
capable of recognizing and interpreting the patterns that could
represent a hot path.

CrystalBall performs well across the spectrum of bench-
marks, only dropping below 0.7 AUROC in two benchmarks.
We also calculated the F1 score for each program, shown in
Figure 13. Though we believe this metric is not as appropriate
for hot path classifiers as AUROC, CrystalBall still compares
favorably to the B&W model.

The LSTM is demonstrably capable of capturing the nuance
of a broad spectrum of different program lengths, complexity,
and class imbalance. This is in addition to the consideration
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Fig. 13: F1 scores by program

that CrystalBall must learn relevant features from much more
raw data than the B&W model. The feature learning, in
combination with the advantage of a sequential input model,
permits CrystalBall to encapsulate the subtleties of hot paths
and removes the burden of feature creation.

E. Model Parameter Sensitivity
Many SPEC programs contain functions with large control-

flow graphs. Enumerating all possible paths to build a training
model would be computationally intractable. We to explore
two possibilities to mitigating this problem: setting a maxi-
mum number of paths that would be enumerated per function
and scaling the number of enumerated paths with the total
number of paths of the function. We expected to obtain better
results using scaling, but when we implemented a simple
function to scale with the logarithm of the total number of
paths and trained a new model using the same programs, the
scaling model actually performed worse than the max-paths
model even though it contained more paths overall.

We found AUROC in most cases increased as we increased
the maximum paths threshold, as seen in Figure 14. Our
model performance improved the more paths we extracted per
training function, even though a lower number of maximum
paths per function allows more programs to be included in the
training set.

1) Training Set and Hardware Limitations: The training
set was limited by the memory limit of our hardware config-
uration. While there are future opportunities to optimize the
efficiency of CrystalBall, we were nonetheless limited by the
size of the model we could feasibly train. We chose to train
on the smallest 15 programs and exclude the larger programs.
With improvements to the system, we could likely train the
model even more accurately.

2) LSTM Model Parameters: We explored varying the num-
ber of retraining generations necessary to improve accuracy.
We find that retraining provides a small improvement in
AUROC value and F1 score for certain programs. For our
experiments, we elected to perform three training iterations.
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F. Feature Importance

There are some interesting insights that can be gleaned from
the logistic regression model described in Section V-C. The
feature weights for the LR model correspond directly with how
much influence a particular feature has on whether a path will
be classified as hot or cold.

The three most influential features, shown in Figure 15,
are the percentage of allocation operations, the percentage of
equality checks, and the percentage of branch operations in
a path. We note that many hot paths have high percentage
of allocation operations. The allocation instruction designates
memory on the stack frame to be used for the current function
[3]. Intuitively, it makes sense that allocation instructions
would predict a hot path, since allocation of memory generally
precedes heavy computational operations where a storage
location is required for intermediate or final values. In a
function containing these operations, a path that does not
allocate memory is probably handling exceptions or special
cases instead of the typical input the function is intended
to handle.

A path with more control flow complexity, represented by a
higher branch operation count, normally indicates that a path
is cold. However, this insight may be less valuable than it first
appears. A function with higher control flow complexity will
have many more paths than a function with lower complexity.
If only a few of those paths are hot, there will be an abundance
of cold paths in a high complexity function. This will make
the ratio of cold paths to hot paths much greater for paths with
many branch operations, thus resulting in the branch operation
feature being heavily weighted towards cold paths.

VI. RELATED WORK

Many areas of research are interested in analyzing and
improving program performance via optimization at compile-
time or runtime. Most of this research falls into two cate-
gories: dynamic profiling, which attempts to measure pro-
gram performance at runtime and use this information to
improve performance in some way (e.g. tools such as Pin and
DynamoRIO) [18] [38], and static profiling, which attempts
to predict program performance at compile-time. In general,
static profiling attempts to define a scope of features to analyze
and optimize, and then identifies those features within a
given program and attempts to classify them via heuristics
or more sophisticated models, such as neural networks. Static
profiling has been used for determining inlining of functions
[6], complexity [27], reliability [47], and precision [15].

A. Static Branch Prediction
A common way to perform static profiling is via static

branch prediction [20]. Ball and Larus demonstrated a
language-independent, low-overhead classification system for
branches. They build a control-flow graph for the executable
and profile to discover which branches are taken vs fall-
through. Their model is built on the idea that non-loop
branches consist of different features than loop branches.
Additionally, they argue that predicting non-loop branches is
very important for obtaining good results. Their model reveals
that using simple heuristics, both loop and non-loop branches
can be predicted sufficiently to be useful for code optimization,
though not quite as accurately as dynamic profiling [9].

However, static branch prediction does not capture the
sophistication of program execution in the way that branch
tracing can. In the context of a control-flow graph, branch
prediction deals simply with a specific edge, rather than
examining an entire path through the graph. Most programs
do not take the same path through a function on every
execution, and binary classification of branches reduces real-
world program execution to a simple binary choice. The path
contains additional information that could be used to predict
future program state. For example, a path that executes a
specific prior basic block may be more likely to execute a
different block later on. Finally, paths are likely to be related to
each other. For example, one path may be identical to another
except for the addition of some error handling code. We aim
to identify these kinds of interactions in our work.

B. Hot Path Enumeration
With our work, we aim to find and leverage the additional

information obtained by tracing path execution to identify
whether a particular path is likely to be taken.

This work is inspired by prior works of static hot path
prediction showing feasibility in detecting hot-paths using
whole-program techniques [34] and other heuristics [23] [11].
Of particular interest is the work done by Buse and Weimer to
apply simple machine learning algorithms to learn statistical
models with features extracted from Java source code [19].
Our work differs from their work in three respects: (1) their
model works only on programs written in Java while our
approach is language-independent, operating on the intermedi-
ate representation (IR); (2) their approach uses features from
function and variable calls while we use only the opcodes from



the IR; and (3) their model uses traditional machine learning
techniques with hand-engineered features while ours leverages
deep learning of sequences of individual basic blocks.

C. Loop Iteration Count
Tetzlaff and Glesner apply machine learning to the problem

of predicting loop iteration count. They formulate the problem
of predicting loop iteration count as a regression problem and
identify static features within the loop that relate to runtime be-
havior [45]. Their machine-learning technique is to use random
forest classification trees trained on these feature vectors to
predict hot-spots within a program. By extracting loop-specific
features from a wide set of programs, the model can learn the
relationship between features and loop execution counts. Our
work is more general as we focus on paths rather than loops.

VII. CONCLUSION

This paper examines static prediction of runtime behav-
ior. Utilizing the ability of deep learning models to learn
sophisticated relationships between sequences of inputs, we
introduce a new approach to statically identify hot paths. Our
system operates on the compiler’s intermediate representation,
offering language-independence. CrystalBall surpasses prior
work in identifying hot paths with an AUROC of 0.85.
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