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Abstract. The power wall has become a dominant impeding factor in
the realm of exascale system design. It is therefore important to un-
derstand how to most effectively create application software in order to
minimize its power usage while maintaining satisfactory levels of per-
formance. In this work, we use existing software and hardware facilities
in order to tune applications to minimize for several combinations of
power and performance. The tuning is done with respect to software
level performance-related tunables (cache tiling factors and loop un-
rolling factors) as well as for processor clock frequency. These tunable
parameters are explored via an offline search in order to find the pa-
rameter combinations that are optimal with respect to performance (or
delay, D), energy (E), energy×delay (E ×D) and energy×delay×delay
(E × D2). These searches are employed on a parallel application that
solves Poisson’s equation using stencil computations. Stencil (nearest-
neighbor) computations are very common operations in today’s scientific
applications. We show that the parameter configuration that minimizes
energy consumption can save, on average, 5.4% energy with a perfor-
mance loss of 4% when compared to the configuration that minimizes
runtime. Furthermore, with the work presented in this paper, we pro-
vide evidence for the existence of opportunities to auto-tune for energy
in parallel applications.

1 Introduction

As the HPC community prepares to enter the era of exascale systems, a key
problem that the community is trying to address is the power wall problem.
The power wall arises because as compute nodes (consisting of multi/many-
cores) become increasingly powerful and dense, they also become increasingly
power hungry. The problems this creates are two-fold; it is more expensive to
run compute nodes due to the energy they require and it is difficult/expensive
to cool them.

Going forward, power-aware computing research in the HPC community will
focus in at least two main areas. The first is to develop descriptive and universal
ways of describing power usage, either by direct measurement or through ex-
planatory models. Inexpensive, commercially-produced devices such asWattsUp?
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Pro [3] or more customized frameworks such as PowerMon2 [4] or PowerPack [13]
can help measure power and energy consumption. Modeling energy usage through
combinations of architectural parameters with performance counters [26] or other
resource usage information [21] also fall in this category. The second thrust,
which invariably depends on the first, is to attempt to minimize the amount
of energy required to solve various scientific problems. This includes the use of
Dynamic Voltage Frequency Scaling (DVFS) technique to exploit processor un-
derutilization due to memory stalls [12,19] or MPI inter-task load imbalances in
large scale applications [12], improvements in the process and design of hardware,
or software-based techniques that change some feature of application behavior
in order to lower some energy-related metric [20].

In this work we explore the optimization space of energy usage and perfor-
mance on a stencil computation, which is an important kernel in many HPC
applications 1. We use a compiler-based methodology to generate and select
among alternative mappings of computational kernels that reduce energy con-
sumption. A unique feature of this work is the combined exploration of the
effect of code-transformation level tunables and CPU clock frequency scaling2

on the overall energy consumption of the system during an application run. In
other words, clock frequency is considered to be one of the tunables along with
code-transformation parameters such as tiling factors and unrolling factors. This
approach can be used to help answer the following questions:

1. Can simple loop transformation strategies such as loop blocking, unrolling,
data copy etc. have an impact on energy consumption?

2. Can we use search heuristics to find a code-variant that performs better in
terms of energy consumption?

3. Is there a trade-off between energy consumption and execution time of an
application? In other words, does the execution time of an application suffer
when our primary goal is to optimize for energy consumption?

In this paper we take a first concrete step towards answering these questions.
The study presented here takes a search-based offline auto-tuning approach. We
start by identifying a set of tunable parameters for different potential perfor-
mance bottlenecks in an application. The feedback driven empirical auto-tuner
monitors the application’s performance and power consumption and adjusts the
values of the tunable parameters in response to them. When the auto-tuner re-
quires a new code variant in order to move from one set of parameter values
to another, it invokes a code generation framework [8] to generate that code
variant. The feedback metric values associated with different parameter config-
urations are measured by running the target application on the target platform.
The methodology is thus offline because the tuning adjustments are made be-
tween successive full application runs based on the observed power consumption
for code-variants.

1 The prevalance of stencil computations in DARPA Ubiquitous High Performance
Computing (UHPC) challenge applications is documented in [10].

2 Frequency scaling can be used to reduce energy consumption.
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2 Motivation

In this section, we demonstrate that there are opportunities for power and energy
consumption auto-tuning. We use an implementation of the Poisson’s equation
solver (described in more detail in Section 3.4) as a test application. One of
the computational hotspots on this application is the relaxation function, which
uses a 7-point stencil operation within a triply nested loop. The two outer-most
(i and j) loops of this function are blocked (using blocking factors TI and TJ

respectively) for better cache usage following Rivera et. al.’s tiling scheme [24].
Better cache utilization can reduce overall power usage because it reduces data
movement costs.

We run the solver with different combinations of TI and TJ and measure the
overall power usage for each combination. The experiment was conducted on
an Intel Xeon E5530 workstation (more description in Section 3). We ran the
application on 8 cores for different combinations of the blocking factors. Clock
frequencies for each of the cores were kept fixed at the highest available level,
2.4GHz. We normalized the measured energy consumption for each combina-
tion of TI and TJ with respect to the energy consumed by compiler optimized
original implementation (non-blocked version compiled with the -O3). Figure
1 shows these results. The interaction between energy consumption and tiling
optimization is interesting and complex. From the energy consumption point of
view, long slender tiles (with TI>TJ) are preferable. The best tiling configura-
tion uses 30% less energy than the compiler optimized original implementation.
Moreover, there exists a fairly large “good” energy consumption area in the fig-
ure. These results imply that relatively naive tuning does not result in anything
near optimal energy usage and that something is needed to guide application
execution toward the optimal solution. We show in the remainder of this work
that auto-tuning is a practical and useful methodology for doing this.

3 Experiments

To drive the tuning process we use Active Harmony [9, 27], which is a search-
based auto-tuner. Active Harmony treats each tunable parameter as a variable
in an independent dimension in the search (or tuning) space. Parameter config-
urations (admissible values for tunable parameters) serve as points in the search
space. The objective function values (feedback metrics) associated with points
in the search space are gathered by running and measuring the application on
the target platform. The objective function values are consumed by the Active
Harmony server to make tuning decisions.

For tunable parameters that require new code (e.g. unroll factors), Active
Harmony utilizes code-transformation frameworks to generate code. The exper-
iments reported in this paper use CHiLL [8], a polyhedral loop transformation
and code generation framework. CHiLL provides a high-level script interface
that auto-tuners can leverage to describe a set of loop transformation strategies
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Fig. 1. Normalized energy consumption of the entire system for 8-core experiment.
Figure is easier to see in color.

for a given piece of code. More details on offline auto-tuning using Active Har-
mony and CHiLL are described in [27]. Both Active Harmony and CHiLL are
open-source projects.

3.1 Power/Energy Measurement

We measure the energy consumption of a system using the WattsUp? Pro power
meter [3]. The power meter is a fairly inexpensive device and, at the time of
this writing, costs less than $150. This device measures the AC power being
consumed by the entire system. We have implemented a command line interface
on top of the wattsup driver to monitor and calculate the overall energy usage
of an application.

3.2 Auto-tuning Feedback Metric

The most common feedback metric used by auto-tuners is application execution
time, which can also be expressed as runtime delay with respect to some base-
line. For energy auto-tuning, however, we need a feedback metric that combines
power usage with the execution time of a given program. There has been a lot
of debate about the appropriateness of different combinations of power and per-
formance [5, 7, 14] in investigating energy consumption reducing techniques in
today’s architectures. All of them hinge on how much the delay in execution
time should be penalized in return for lower energy.
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In this work, we use four different feedback metrics: E (total energy), ED

(energy×delay), ED2 (energy×delay×delay) and T (execution time). Total en-
ergy (E) is derived by multiplying the average power usage by the application
execution time. E does not penalize execution time delay at all. T penalizes only
execution time delay with no credit for saving energy. Between these extremes,
ED and ED2 metrics put more emphasis on the total application execution time
than the total energy metric. The appropriateness of which metric to use depends
on the overall goal of the tuning exercise and one could certainly consider a user-
set set delay penalty per job. We think these 4 are enough to characterize our
methods and and the optimization space.

3.3 Experimental Platform

The experiments were conducted on an Intel Xeon E5530 workstation. The E5530
has 2 quad-core processors. Each core has its own 32KB L1 cache and 256KB L2
cache. Each of the quad-core processors has a shared 8MB L3 cache (for a total of
16MB of L3 for the 8 cores). Each of the 8 cores can be independently clocked at
1.60GHz, 1.73GHz, 1.86GHz, 2.00GHz, 2.13GHz, 2.26GHz, 2.39GHz or 2.40GHz.
Processor clock frequency is changed using the cpufreq-utils package [1] that
is available with many popular Linux distributions.

3.4 Results for Poisson’s Equation Solver (PES)

Poisson’s equation is a partial differential equation that is used to character-
ize many processes in electrostatics, engineering, fluid dynamics, and theoretical
physics. To solve for Poisson’s equation on a three-dimensional grid, we use a
modified version of the parallel implementation provided in the KeLP-1.4 [2] dis-
tribution. The application is written in C++ and Fortran. The implementation
uses the redblack successive over relaxation method to solve the equation. The
core of the computational time is spent on two kernels: the relaxation function,
which uses the stencil computation (described in Section 2), and the error cal-
culation function, which calculates the sum of squares of the residual over the
3D grid. The error calculation portion of the code is optional and can be turned
on or off using a command line parameter. These functions are tuned separately
in offline modes.

For the relaxation function, we use the tiling optimization scheme that we
described in Section 2. Active Harmony determines the dimension of the tiles
and the appropriate CPU frequency — a three dimensional search space. The
error function optimization requires new code generation. For this function, we
tile all three loops and the innermost loop is unrolled. Thus, the search space
for error function optimization is five dimensional — four code transformation
parameters and the CPU frequency.

Table 1 shows the results for relaxation function tuning. For each of the
feedback metric, we conducted three auto-tuning runs. The table shows the
results for the best parameter configurations and also the averages across three
runs. The data provided in the table are normalized with respect to the timing



6

Table 1. PES-Relaxation kernel results (4003 grid, 8-cores)

E(µ) ED(µ) ED2(µ) T (µ)

Best Configurations

speedup (time) 2.18 (2.13) 2.25 (2.39) 2.24 (2.39) 2.27 (2.40)

norm. ener. usage 0.42 0.43 0.43 0.44

Averages

norm. speedup (time) 2.16 2.22 2.22 2.24

norm. ener. usage 0.42 0.44 0.44 0.45

µ (clock frequency in GHz)

and energy usage of the original program (compiled with the -O3) when run at
the highest available frequency.

Empirical tuning via automatic generation of code alternatives and/or care-
ful selection of parameters that govern the application of different optimization
strategies has proven its merit in last few decades [24, 27, 28]. Needless to say,
the technique delivers its promise in our experiments as well. However, we are
more interested in the energy side of the application execution behavior. Ac-
tive Harmony’s search favors a lower clock frequency for better energy usage.
On average, energy conscious parameter configurations save 58% energy and run
2.16× faster compared to the baseline compiler optimized code. The auto-tuning
runs that use ED, ED2 and T metrics all favor high clock frequency and show
similar performance and energy characteristics. In terms of the best runtime
improvement, auto-tuning runs done with delay as the feedback metric achieves
2.24× improvement along with energy saving of 55%. This confirms the popu-
lar belief that auto-tuning for runtime in scientific applications leads to better
system-wide energy usage.

Often the best performing code is nearly the most energy efficient as short
runtimes shorten one component of the Power×T product (Energy). So finally,
we compared the performance and energy consumption measurements between
configurations that give best timing and best energy usage respectively. The
configuration that provides best energy usage suffers a delay of 4.1%; however,
the energy usage saving is 5.8%. The search heuristic used in these experiments
does not guarantee a globally best configuration with respect to timing or en-
ergy consumption, which means there can be other configurations in the search
space that can possibly demonstrate different behavior. However, the result indi-
cates that there are some non-trivial interactions between compiler performance
optimization strategies and energy usage.

Table 2 shows the results for L2-Error function. The results for this function
follows a similar pattern to that of the relaxation function. We then compared
the performance and energy consumption measurements between configurations
that give best timing 3 and best energy usage respectively. The configuration

3 Note that for this kernel, ED2 tuning runs gives the best timing, which is what we
use for the comparison with the best energy usage configuration.
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Table 2. PES-L2Error kernel results (4003 grid, 8-cores)

E(µ) ED(µ) ED2(µ) T (µ)

Best Configurations

norm. speedup (time) 1.15 (2.13) 1.17 (2.39) 1.20 (2.40) 1.18 (2.40)

norm. ener. usage 0.80 0.82 0.85 0.86

Averages

norm. speedup (time) 1.15 1.15 1.18 1.17

norm. ener. usage 0.82 0.83 0.86 0.87

µ (clock frequency in GHz)

that provides best energy usage suffers a performance loss of 3.9% and the energy
usage savings is 5%. This result further strengthens our earlier argument about
the need to investigate the interactions between compiler optimization strategies
and energy consumption.

4 Future Work

In this paper, we have relied exclusively on the Wattsup Pro? to gather AC
power measurements at a 1 second granularity. Going forward, we would like to
utilize more fine-grained DC power measurement tools such as PowerMon2 [4]
that allow for measurements of individual system components at much higher
sampling rates. Doing so would allow us to be able to attribute fractions of the
total energy consumed to various components of the compute systems, such as
memory subsystem energy usage and CPU energy usage. This association will
allow us to target specific optimization techniques to reduce energy usage of
various components. Finally, we would like to extend this work to use online
tuning. That is, the application will be energy-tuned while it runs.

5 Related Work

Reducing power consumption has long been of great interest to embedded and
mobile systems architects [11, 18, 22]. The architectural properties of these sys-
tems are fundamentally different from those of the HPC systems, so the strategies
proposed for for them generally fail to translate into reducing energy consump-
tion for HPC systems and applications [16]. As such, power optimization has
received a fair amount of attention from the HPC community. Most previous re-
search on power optimization uses architectural simulation to estimate power or
energy usage by different components of the compute system [6]. More recently,
direct power and energy measurement hardware and software have been devel-
oped [4,13,15]. Bedard et. al. [4] developed PowerMon2, a framework designed to
obtain fine-grained current and voltage measurements for different components
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of a target platform such as CPU, memory subsystem, disk I/O etc. Power pro-
filing frameworks can be integrated within our power auto-tuning framework to
obtain greater understanding of the impact of different optimization techniques
on individual components of the target architecture.

Power or energy usage modeling and benchmarking is another relevant area.
The Energy-Aware Compilation (EAC) [17] framework uses a high-level en-
ergy estimation model to predict the energy consumption of a given piece of
code. The model utilizes architectural parameters and energy/performance con-
straints. The overall idea is to use the model to decide the profitability of different
compiler optimization techniques. Singh et. al. [26] derive an analytic, workload-
independent piece-wise linear power model that maps performance counters and
temperature to power consumption. Laurenzano et. al. [19] use a benchmark-
based approach to determining how system power consumption and performance
is affected by various demand regimens on the system, then use this to select
processor clock frequency.

Seng et. al. [25] examine the effect of compiler optimization levels and a few
specific compiler optimization flags on the energy usage and power consumption
of the Intel Pentium 4 processor. Rather than relying on compiler optimiza-
tion levels, we exercise a greater control over how different code transformation
strategies are applied. Moreover, our technique is general purpose and uses a
fairly inexpensive power measurement hardware to guide the exploration of the
parameter search space.

Rahman et. al. [23] use a model-based approach to estimate power consump-
tion of chip multiprocessors and use that information to guide the application
of different compiler optimization techniques. This work is most closely related
to the work that we have presented here. Power estimations for different code-
variants are obtained using the model described by Singh et. al. [26]. Our work
uses power measurements rather than models and we simultaneously treat clock
frequency as a tunable parameter alongside the generation and evaluation of
different code variants.

6 Conclusion

In this paper, we showed that there are non-trivial interactions between com-
piler performance optimization strategies and energy usage. We used a fairly
inexpensive power meter and leveraged open source projects to explore energy
and performance optimization space for computation intensive kernels.
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