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Abstract
Models of application behavior are one of the keys to

bridging the gap between current large-scale system design
practices and upcoming exascale system designs. Proces-
sor/accelerator specialization and heterogeneity have been
proposed as possible paths forward for attaining the signif-
icant energy efficiency improvements necessary to achieve
exascale-level computing capabilities within an acceptable
power envelope. To have an impact on the exascale system
design process, the models must be (1) abstract, containing in-
formation that is relevant and actionable across a wide range
of programming and execution models and (2) complementary
to a well-defined and standardized machine characterization
methodology.

We argue that a key component of this modeling paradigm
is what we term an idiom, a small computational or memory
access pattern. We hypothesize that much of the computational
work within HPC can be expressed as the combination of a
reasonably small number of basis idioms. Understanding
application composition and machine characteristics in terms
of how they behave in the presence of (combinations of) this
small number of idioms allows us to bridge the gap between
large workloads and an increasingly diverse and complex
landscape of hardware options.

1. Background
The difficulty in realizing exascale computing stems primarily
from the requirements that it be simultaneously more energy
efficient and resilient to errors. Realizing energy efficient
computing is becoming increasingly more difficult as the tech-
nology trends (Dennard scaling and Moore’s law) that allowed
computer users (particularly the HPC community) to effort-
lessly experience improved performance and energy efficiency
appear to be coming to an end. Without such improvements, it
also becomes apparent that delivering higher computational ca-
pability to large scale computations will require an increasing
number of hardware components, introducing difficulties to
the previously-enjoyed notion of resilient and stable hardware
at the application level.

One of the most promising areas for realizing the vast im-
provements in energy efficiency required for exascale comput-
ing is hardware specialization. Specialization is motivated by
the argument that energy efficiency is best served by deliver-

ing to a computation the specific design and architectural fea-
tures that give maximum performance, while avoiding wasting
energy on features that have little or no benefit. The prob-
lem, however, is that different computational problems show
proclivities for different designs and architectural features.
Traditionally, this problem has been addressed by large scale
system design and procurement strategies that seek the best
average performance, perhaps with small amounts of varia-
tion from the average to account for important special cases
(e.g., large memory nodes or nodes with accelerators). This
limitation in the amount of tolerable variety within a single
HPC system is likely to be (reluctantly) discarded as system
designers strive to achieve energy-efficiency improvements
across diverse workloads.

As system designers consider a set of heterogeneous and
increasingly exotic hardware options, it becomes difficult to
see how current modeling approaches will provide them with
a set of tools that allows them to meaningfully answer im-
portant questions about how their workload will behave on
each hardware platform, what tradeoffs exist between their
design options, and what combination of platforms match
their design goals. Current approaches either do not scale
well because they involve the guidance of experts or signif-
icant levels of effort to incorporate new and non-traditional
architectures [5, 10]. We argue in this paper that idioms, key
computational and memory patterns that are common in HPC
codes, can be used as a rubric through which we can view
diverse sets of HPC applications and hardware platforms and
may be instrumental in the successful design and realization
of exascale systems.

2. The Role of Idioms

Idioms play an important role in understanding the interac-
tions between an application and hardware. An idiom is a
computational or memory access pattern that appears across
a range of HPC codes. An idiom should not be confused
with a dwarf [4, 2]; idioms are limited, simple statements ex-
pressed in source code while dwarfs are high level algorithms
representing classes of problems/algorithms. Some examples
of idioms include matrix-matrix multiply, stream, transpose,
reduction, stencil, gather and scatter. Idioms are small and
concise expressions, often capable of being expressed in only
a few lines of source code. The limited size and scope of an



idiom suits it well for being the unit that is analyzed, ported,
and run on specialized hardware. Indeed, prior work shows
that idioms can be used to effectively map certain parts of
HPC applications into existing co-processor technologies like
GPGPUs [3], FPGAs [7], and the Intel Xeon Phi [9]. The
hypotheses motivating this paper are:
• An application can largely be described in terms of its con-

stituent idioms.
• A covering set of idioms which can be used to describe

much of the computational work done in HPC is reasonably
small.

We envision that the adoption of the idiom-centric approach
to analysis and design favors an environment in which heav-
ily optimized library implementations akin to LAPACK [1]
are provided by hardware vendors or researchers. We note
that looking just at the idiom composition of a given appli-
cation does not provide the entire story for a particular ap-
plication/machine interaction. Other properties, such as the
idiom’s working set size, how an idiom interacts with other
nearby idioms, and how idioms synchronize/communicate
across computing elements, play important roles as well. To
systematically consider these relevant properties, our idiom-
centric approach adopts a three-step process known as the
convolution method [10] in which information about an ap-
plication (called an application signature) is convolved with
information about a machine (called a machine profile) in or-
der to produce a model of the behavior of that application on
that machine.

[Machine Profiles] The first step is to fully characterize the
set of potential hardware platforms, not in terms theoretical
specifications offered by the vendor, but by the actual perfor-
mance and power behavior for a series of computations that
are relevant to the idioms that make up HPC codes. We refer
to this set of computations as idiom-aware benchmarks. This
set of idiom-aware benchmarks should be used to probe the
hardware to develop a detailed picture of how it performs in
the presence of each particular computation. We view param-
eterized benchmarking [6], in which the benchmark exposes
a series of tunable knobs, to be a plausible methodology for
approaching this problem.

A set of idiom benchmark results aggregated across hard-
ware platforms can be used to highlight the set of tradeoffs that
might be made for that computation across those platforms,
while the aggregation of idiom benchmark results taken for a
single hardware platform can be used in tandem with a ma-
chine profile to develop a detailed model of that platform.

[Application Signatures] The second step is to isolate the
set of application characterizing idioms, as is shown in [8].
Identifying the idiom coverage of an application can be used
not only in understanding the advantages of various proposed
hardware but also in understanding the computational similar-
ities among applications. While from an algorithmic view two
applications might seem quite different, from a hardware view
the applications may appear quite similar for some computa-

tional phases. It is these similarities that aid in the co-design
of an exascale system for a diverse workload.

[Convolution] The final stage is in mapping the applica-
tion’s idiom characterization to the hardware to determine
which specialized hardware would benefit the workload in a
co-design process. The mapping is enabled through a combi-
nation of static and dynamic characterization processes. The
static component involves combing the source code of large
HPC applications for computational idioms automatically [8],
while the dynamic component exposes other important fea-
tures of behavior (e.g. cache hit rate, data locality, memory
operations, floating-point operations, dependencies) that occur
during the computation. The combination of these static and
dynamic components yields a set of features that describes the
application, a feature set mirrored by tunable knobs within the
idiom-aware benchmarks. By implementing tunable knobs in
the idiom-aware benchmarks that vary the important features
above, and then tuning the knobs to characterize the applica-
tion in terms of the benchmarks, it is possible to provide a
mapping of the application to the hardware’s features.

Many challenges lay ahead on the path to exascale comput-
ing. A major impediment to realizing exascale is the lack of a
practical framework for models that accurately describes the
array of application/machine interactions that must be well
understood before making system design decisions. In this
paper we have proposed using computational idioms as an
approach to realizing this framework.
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